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1. INTRODUCTION

1.1. Fractional Motions

A fractional Brownian motion (fBm, in short) X(t) is a self-similar Gaussian
process with stationary increments in the complex plane, or even in a
higher dimensional space. For some exponent H ¥ [0, 1], the time-scaled
process X(lt) and the range-scaled process |l|H X(t) are statistically indis-
tinguishable, for every factor l. In the real case, X(t) is a classical Brow-
nian motion when H=1/2. The concept was introduced by Kolmogorov
[Kol40] and discussed further by [MVN68] and many others.

Let fn be independent random variables uniformly distributed on
[0, 2p]. The Mandelbrot–Weierstrass process (WM-process, in short)

Mr(t)= C
.

n=−.
(1−e ir

nt) r−Hn e ifn, r > 1, (1.1)
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has also stationary increments but its self-similarity is restricted to factors
from the Weierstrass spectrum, l=rm, where m are integers. In the shape
of the series one may recognize the archetype of continuity without dif-
ferentiability. The original Weierstrass function has utilized the series
restricted to n \ 0 and involved deterministic phases fn=npf, for an irra-
tional f. Mandelbrot [Man77] extended the spectrum to low frequencies
and noted a number of similarities between the randomized process and the
fBm.

Berry and Lewis [BL80] observed that the variances (called here
structure functions; see the vicinity of (2.9)) of the suitably normalized WM-
process

Wr(t)=`ln r Mr(t) (1.2)

and of a fractional Brownian motion W(t) are approximately equal, as
rQ 1. More precisely,

O|Wr(y+t)−Wr(y)|2P=2 ln r C
.

n=−.
(1− cos(rnt)) r−2Hn

% cH |t|2H=cHO|W(y+t)−W(y)|2P. (1.3)

This fact indicated that a normalized WM-process should converge to a
fBm, for rQ 1.

Many authors have applied the WM-process to approximate the frac-
tional Brownian motion (e.g., see [HB89, Chu93, MW69a] and references
in there). This model spread to many areas, from hydrology to geophysics
to astronomy to finances, and so on. The listing [Kle74, LK77, Tur89,
MW68, MW69b, MW69c, MVN68, Vos89, HB89, MB93, Lo91, Kor92,
MSL97] shows but a small sample of articles.

1.2. Objective

We will render Berry and Lewis’s claim rigorous.
Regarding the limit as rQ 1, finite dimensional distributions of a

process Wr(t)=Xr(t)+iYr(t) are said to converge to finite dimensional dis-
tributions of a process W(t)=X(t)+iY(t) if, for every n, every times
t1, ..., tn, and every real numbers x1, ...xn, y1, ..., yn,

lim
rQ 1

P(Xr(tk) < xk, Yr(tk) < yk, k=1, ..., n)

=P(X(tk) < xk, Y(tk) < yk, k=1, ..., n). (1.4)
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From now on, the phrases ‘a process converges’ or ‘a limit process’ refer to
this definition.

The qualitative character of the definition gives no irrefutable answer
to the question "How close are the processes to each other?" The simple
deviation between structure functions quantitates the proximity of pro-
cesses quite well but it does not relate to the proximity of distributions, in
general.

Yet, for real Gaussian processes, both notions of convergence are
equivalent. The equivalence usually fails for complex processes, even
Gaussian processes, or if one of them is not Gaussian. The Weierstrass–
Mandelbrot process was declared as a Gaussian process in [BL80] yet it is
not. No Gaussian variable can be written as the sum of independent
random variables of which one is not Gaussian (by Cramér’s theorem, cf.,
e.g., [Lu70, Theorem 8.2.1]). Of course, had Wr(t) been a real Gaussian
process, then the convergence of its structure function to the structure
function of the fBm(H) would be sufficient, and RWr(t) would converge to
the a real fBm in distribution. For example, Wr(t) shares its variance with
the Gaussian process

Gr(t)=`ln r C
.

n=−.
(1−e ir

nt) r−Hn
tn+it

−

n

`2
, (1.5)

where (tn, t
−

n; n \ 0) are independent pairs of independent standard Gaus-
sian random variables. Limit property (1.3) implies that RGr(t) and IGr(t)
converge to real fBms, for rQ 1. But a process is not Gaussian until
proven Gaussian. In particular, the sum of independent infinitesimal
factors leads often but not always to a Gaussian law. For example, the
Rademacher series S=;.

n=1 Rnr
−n, where Rademacher variables Rn are

independent random signs ±1, may have a variety of distributions, some
of them being very far from Gaussian, for some ratios r. For example, if
r=2, then S is uniformly distributed on [−1, 1]. If r=3, then the proba-
bility measure induced by S is singular because the distribution function of
S has the ternary Cantor set on [0, 1] as its spectrum, etc. (see [Kaw72,
13.4 & references]).

Mandelbrot [Man77, pp. 328-331] called (1.5) the Gauss–Weierstrass
process, while its counterpart, with tn, t

−

n being Rademacher functions, the
Weierstrass–Rademacher process (consequently, the WM-process should be
called Weierstrass–Steinhaus). Nevertheless, the specific structure of the
Weierstrass–Mandelbrot (or its counterparts) process will lead to the
Gaussian limit.

It is well established that the Hausdorff (fractal) dimension of a typical
path of real fBm is equal to D=2−H, and this was mentioned already by
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Mandelbrot. In [BL80] the authors gave an heuristic and experimental
evidence that the real part of the WM-process should also have trajectories
with DHausdorff=2−H. The key step in establishing the result was to prove
that the electrostatic energy integral was finite (see [BL80, Section 4,
(20)–(25)]. That step was sustained by assuming that the WM-process is
sufficiently close to a Gaussian process [BL80, formulae (24)–(25)]. The
technique factually leads to the aforementioned Hausdorff dimension 2−H
of the Gauss–Weierstrass process (1.5) (see [SO1] for the case of WM).

The proximity of structure functions will factually imply the conver-
gence of probability distributions. For this reason we call the WM-process
and similar processes quasi-Gaussian. The variance of an increment has
been dubbed a structure function although it does not determine the
covariance configuration of a complex process. All the more, should the
structure function converge still no inference could be made about the limit
covariance. Therefore, we have to consider the second structure function
I(s, t), i.e., the covariance of the real and imaginary part of a process.
These two structure functions provide a quantitative means to control the
proximity of quasi-Gaussian processes.

Recall that the fBm is self-similar and the WM-process is almost self-
similar. In the spirit of self-similarity and stationarity, one could expect
that a quality approximation over a short time interval determines the
same over an arbitrary time interval. In other words, if two process are
E-close over a unit interval, they should be d(T) · E-close over an interval of
length T, regardless of the position of the intervals, for some scaling factor
d(T). Formally, this requires to deal with the uniform convergence of the
structure functions, including an estimate of d(T). According to intuition,
d(T) ’ T2H. The pointwise convergence is easier to obtain but its conse-
quence is less reliable.

1.3. Scope

Section 2 is but a compendium on complex stochastic processes with
stationary increments. More information can be found in, e.g., [Yag58].
Under reasonable assumptions, the two structure functions, D(t) and
I(s, t), determine completely its covariance configuration. The spectral
representation helps to differentiate between various complex fractional
motions.

In Section 3 we prove that the structure functions Dr(t) and Ir(s, t) of a
normalized Weierstrass–Mandelbrot process Wr(t)=`ln r Mr(t) converge
to the corresponding structure functions of a complex fractional Brownian
motion, uniform with respect to all time moments s, t from an arbitrary
time interval [0, T].
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In [BL80], the authors referred to the Poisson summation formula as
a tool in proving the convergence of Dr(t). We have found that this method
alone is suitable only for H> 1/4. For H [ 1/4, the approach must be
augmented by an additional argument. The limit relation takes place if and
only if (see Subsection 5.2.2)

C
n ¥ Z, n ] 0

e inx ln(cnx)

|nx|2H+1/2
Q 0, xQ.

This is apparently true, if H> 1/4. However, even the proof of the exis-
tence of the series may be a cunning problem, when H [ 1/4. That tech-
nique might have suggested that H=1/4 is a ‘‘threshold value’’ for the
family of fBm(H)’s and related processes. The well known threshold value
H=1/2 partitions the class of all fBm(H)’s into persistent (H> 1/2), anti-
persistent (H< 1/2), and chaotic (H=1/2) processes (Figs. 1 and 2).
Although some other calculations that we performed also showed the need
of considering somewhat special role of the parameter H=1/4 but we

Fig. 1. Truncated seriesWr, |n| [ 10, 000.
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Fig. 2. The truncation of the seriesWr, −N− [ n [N+, minimizes the error less than 0.01.

arrived in no different conclusions that would further discriminate the
category of processes. We also know of no physical reason justifying the
existence of this additional special value. Our present proof is consistent
with the existence of one threshold point, H=1/2.

Again, the covariance structure does not determine the distribution of
the process, nor the convergence of covariances implies the convergence of
probability distributions. The Gaussian case is an exception. In Section 4
we introduce the class of quasi-Gaussian processes. Although quasi-
Gaussian processes may be non-Gaussian, like the Weierstrass–Mandelbrot
process is not, yet they share the important property with Gaussian pro-
cesses. The convergence of the covariance function is sufficient for the
convergence of finite dimensional distributions.

Further, we show that even the convergence of (finite dimensional)
probability distributions of the process `ln r Mr(t) is uniform over every
bounded time interval [0, T].

We would like to thank the referee for his exhaustive analysis of con-
secutive versions of the manuscript and for making numerous illuminating
remarks. Initially, the paper included a brief discussion of the numerical
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simulation of the WM and related motions. Partially because of the ques-
tions asked by the referee, and partially because of the demanding sharp
estimates of approximation errors, that fragment became entangled (or
enriched) with extensive computation, and has exceeded the capacity of the
present note. Consequently, we have partitioned the topic into a more
theoretical part (the present note) and an applied part [SM00]. At the
same time, we rephrased key results using a quantitative language.

A consequent research on the subject can be found in [PT00].

2. PROCESSES WITH STATIONARY INCREMENTS

2.1. Covariance Functions

We denote the mathematical expectation of a random variable X by
EX or OXP. A complex stochastic process W(t)=X(t)+iY(t) is of second
order, if E |W(t)|2 <., for every parameter t. In this paper we deal only
with zero mean second order processes. Without loss of generality we may
and do assume that our processes start at 0, W(0)=0 almost surely. A
complex process can be seen as a two-dimensional process (X(t), Y(t)).
Thus, its covariance structure is given by the three bivariate functions

CR(s, t)=EX(s) X(t), CI(s, t)=EY(s) Y(t), CM(s, t)=EX(s) Y(t)

(where ‘‘C’’ stands for ‘‘covariance’’, ‘‘R’’ for ‘‘real’’, ‘‘I’’ for ‘‘imaginary’’,
‘‘M’’ for ‘‘mixed’’). The covariance function

C(s, t)=OW(s), W(t)P=EW(s) W(t)

=CR(s, t)+CI(s, t)+i(CM(t, s)−CM(s, t))

is insufficient to recover the complete covariance structure, in general. We
say thatW(t) has stationary increments, if

OW(v)−W(t), W(u)−W(t)P=OW(v−t), W(u−t)P=C(v−t, u−t). (2.1)

We have factually defined the stationarity in the wide sense. The statio-
narity in the narrow sense requires the finite dimensional distribution of the
difference process to be invariant under the translation of time. The
covariance structure does not determine the distribution of the processes
nor the stationarity in the wide sense implies the stationarity in the narrow
sense. However, Gaussian processes are exception to this rule. The
examples in the introduction show two processes with stationary incre-
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ments and the same covariance structure such that (1.2) is not Gaussian
and (1.5) is Gaussian.

To verify the stationarity of increments of a real process W(t) one
needs only to check that the quantity

D(u)=df E |W(t+u)−W(t)|2 (2.2)

does not depend on t, and then the covariance of increments is only lag-
dependent and location-independent. Indeed,

OW(u)−W(s), W(v)−W(t)P=1
2 (D(u−t)+D(s−v)−D(u−v)−D(t−s))

(2.3)

No such relation is valid in the true complex (two-dimensional) case.
Within the covariance theory, one must still verify the defining equality
(2.1). The stationarity of increments of a complex valued process cannot be
deduced from the same property of the real and imaginary parts, even
when they have the same probability distribution. The latter condition
ensures CR=CI but leaves CM unknown. By the same token, stationary
increments of a complex processes do not secure stationary increments of
the real and imaginary parts.

2.2. Spectral Theory

We refer to Subsection 5.1 for a brief on the stochastic integration. A
complex valued process with stationary increments admits a spectral repre-
sentation

W(t)=F
.

−.
(1− exp {itw}) Z(dw), (2.4)

where Z=Z1+iZ2 is an orthogonally scattered random process. The
control measure (cf. Subsection 5.1) F(dw) is often dubbed the spectral
measure or the spectrum of the process. If F(dw)=f(w) dw, then f(w) is
called a spectral density or power spectrum of the process. The covariance
function satisfies the formula

C(s, t)=F
.

−.
(1− exp {isw}− exp {−itw}+exp {i(s−t)w}) F(dw). (2.5)
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Note the representation of the real and imaginary parts of the process,

X(t)=RW(t)=F
.

−.
(1− cos tw) Z1(dw)+F

.

−.
sin tw Z2(dw)

Y(t)=IW(t)=−F
.

−.
sin tw Z1(dw)+F

.

−.
(1− cos tw) Z2(dw).

(2.6)

Hence,

RC(s, t)=CR(s, t)+CI(s, t)=F
.

−.
(1−cos sw−cos tw+cos(s−t) w) F(dw),

IC(s, t)=CM(t, s)−CM(s, t)=F
.

−.
(sin(s− t) sw− sin sw+sin tw) F(dw).

(2.7)

As we have noted above, the covariance structure (CR, CI, CM) may be
unrecoverable from the above formulae. In general, the integrals cannot be
separated into simpler terms. The difficulties disappear if the process has
the following properties

(1) Z1 and Z2 are equidistributed and orthogonal

(2) F
.

−.
(1Nw2) F(dw) <.

ˇ (2.8)

The first property ensures the stationarity of increments of the real proces-
ses X(t)=RW(t) and Y(t)=IW(t). In order to obtain a spectral repre-
sentation of X(t), we replace Z(dw) (2.4) by S(dw)=S1(dw)+iS2(dw),
S1(dw)=(Z1(dw)+Z1(−dw))/2, S2(dw)=(Z2(dw)−Z2(−dw))/2. Then,
(F(dw)+F(−dw))/4 is the spectral measure of X(t) or Y(t). W(t) is a
pure real process (i.e., Y(t)=0), if Z(−dw)=Z(dw). For example, when
in (1.5), t−n=tn and t −−n=−t

−

n, then Gr takes only real values.
Under (2.8), the two structure functions fully determine the covariance

structure:

D(t)=df E |W(y+t)−W(y)|2=2 F
.

−.
(1− cos tw) F(dw)

I(s, t)=1
2 F
.

−.
(sin(s− t) w− sin sw+sin tw) F(dw), s > t.

ˇ (2.9)
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Indeed,

CR(s, t)=CI(s, t)=1
2 (D(s)+D(t)−D(s−t))

CM(s, t)=I(t, s)=−CM(t, s).
(2.10)

Under a strengthened condition (2) in (2.8),

I(s)=df ˛F
.

−.
sin sw F(dw)/2, if, e.g., F

.

−.
(1N |w|) F(dw) <.;

F
.

−.
(sin sw−sw) F(dw)/2, if, e.g., F

.

−.
(|w|3N |w|) F(dw) <.;

(2.11)

the function I(s, t) will take form I(s, t)=I(s−t)−I(s)+I(t), s > t. A real
valued zero-mean Gaussian process W(t) with stationary increments such
that W(0)=0 is called a fractional Brownian motion with a parameter
H ¥ (0, 1) (fBm or fBm(H), in short), if its structure function satisfies the
formula D(t)=a |t|2H, for some constant a > 0. If H=1/2, then X(t) is a
classical Brownian motion. The fBm(H) is self-similar with parameter H,
that is, for every real c,

(W(ct1), ..., W(ctn))=
D |c|H (W(t1), ..., W(tn)),

where ‘‘=D ’’ marks the identity of distributions. Most of the arguments
require that 0 < H < 1 even though one may still consider extreme trivial
casesW=W(0)=0, for H=0, andW(t)=W(1) · t, for H=1.

We refer to a ‘complex fBm’ when the real and imaginary parts of a
complex process W(t) are real fBms. The probability distribution of a
complex fBm is not unique although it must be Gaussian. For example, let
Z=B1+iB2, where B1, B2 are independent classical Brownian motions. The
process

W(t)=X(t)+iY(t)=F
.

−.
(1− exp {iwt}) |w|−H−1/2 Z(dw) (2.12)

is a complex fBm such that X(t)=RW(t) and Y(t)=IW(t) are inde-
pendent identically distributed real fBm(H)’s. Notice that W(t) is time-
reversible. That, isW(t)=D W(−t) (or equivalently,W(t)=D W(a−t)−W(a)
for every a). Every real fBm has this property. In addition, the basic struc-
ture function D(u) completely determines the distribution, since
I(t, s)=CM(s, t)=0.
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In order to show a different complex fBm, let us reduce the spectral
domain (−.,.) to the half-line (0,.). The real and imaginary parts

W(t)=F
.

0
(1− exp {iwt}) |w|−H−1/2 2−1/2(B1(dw)+iB2(dw)), (2.13)

are dependent fBm(H)’s. We call this time-irreversible process the Mandel-
brot–Berry–Lewis fBm (MBL-process, in short).

The first structure function D(u) of the MBL-process equals one half
of the corresponding structure function of process (2.12). More precisely,

D(u)=2rH |u|2H,

rH=F
.

0

1− cos w
w2H+1

dw=˛
cos(Hp) C(2−2H)
2H(1−2H)

if H ] 1/2

p/2= lim
HQ 1/2

rH if H=1/2

(2.14)

In contrast, the second structure functions I(s, t) of the MBL-process
(2.13) is nontrivial,

I(s, t)=
1
2
F
.

0
(sin(s− t) w− sin sw+sin tw)

dw
w2H+1

, (s > t).

For H> 1/2 or H< 1/2 we can use formulae (2.11):

I(s, t)=IH(s, t)=iH((s− t) |s− t|2H− sign(s) |s|2H+sign(t) |t|2H), s > t,
(2.15)

where

iH=˛F
.

0
sin w

dw
w2H+1

if H< 1/2

F
.

0
(sin w−w)

dw
w2H+1

if H> 1/2

ˇ=sin(Hp) C(2−2H)
2H(1−2H)

(2.16)

(the integrals related to rH and iH can be computed directly or one may
consult [GR80, pp. 420-421]). By the same token, for H=1/2,

I1/2(s, t)=(t−s) ln |s− t|− t ln |t|+s ln |s| (2.17)

(by taking limHQ 1/2 IH(s, t) or using formulae from, e.g., [GR80, p. 433]).
The limit approach applies also to processes (2.13), (2.12), or (1.1).
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Lemma 2.1. Processes (2.13), (2.12), or (1.1) are L2-continuous in
the parameter H ¥ (0, 1), uniformly in t from a bounded interval. More
precisely, denoting any of these processes byWH(t),

E |WH(t)−WHŒ(t)|2 [ C |H−HŒ|. (2.18)

The constant C depends on (T, r, H, HŒ), with CQ. when max(H, HŒ)
Q 0 or min(H, HŒ)Q 1.

Proof. Processes (2.13) and (2.12) follow representation (2.4), with
Z=ZH=`fH(w) B(dw) and spectral measure FH(dw)=fH(w) dw. Since
|a−b|2 [ |a2−b2| for positive a, b (below, (a=fH(w), b=fHŒ(w)), then

E |WH(t)−WHŒ(t)|2=2 F (1− cos(wt)) E |ZH(dw)−ZHŒ(dw)|2

[ 2 F (1− cos(wt)) |FH(dw)−FHŒ(dw)|.

In the series representation (1.1) we estimate separately the sum over nega-
tive integers and the sum over nonnegative integers (with p=ln r, a=ln t).
Let a=min(H, HŒ), b=max(H, HŒ). Since,

d
dH
p(1−e−2Hp)−1=

2p2e−2Hp

(1−e−2Hp)2
[
e2Hp

2H2
,

thus

p C
n \ 0
(1− cos(enp+a)) |e−2npH−e−2npHŒ|

[ p : 1
1−e−2pH

−
1

1−e−2pHŒ
: [ e

2bp

a2
|H−HŒ|

Similarly, since |(1− cos wt)| [ (wt)2/2,

p C
n [ 0
(1− cos(enp+a)) |e−2npH−e−2npHŒ| [

t2

2
e2(1−a)p

(1−b)2
|H−HŒ|

The continuous case (2.12) (or (2.13)) follows similarly, after the integral is
split into one part over [−1, 1] (or [0, 1]), and the other part, over its
complement. Clearly, the constant C=CH, HŒ deteriorates, when H and HŒ
are close to 0 or 1. L
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A self-similar real Gaussian process with stationary increments is
necessarily a fBm. Why is this definition inappropriate in the complex case?
For example, let us replace in (2.13) the integrator 2−1/2d(B1+B2) by dB1.
Then, the obtained Gaussian process is self-similar with exponent H, has
stationary increments and even the same structure function D(t). However,
the second structure function I(s, t) is different, so is the covariance struc-
ture. In particular, the real and imaginary parts are not fBm’s for their
increments are no longer stationary.

Before we state our main theorem let us notice that Gaussian proces-
ses (1.5) and the MBL-process are almost indistinguishable, up to a rescal-
ing factor. In order to explain this statement, it suffices to observe that
stochastic integral (2.12) is factually the limit in L2 (i.e., in variance) of its
approximation, cf. Subsection 5.1. For example, for r > 1 we define the
piecewise constant power spectrum by putting r−n(H+1/2) on the interval
(rn, rn+1], n=0, ±1, ±2, .... Observe that B1(rn+1)−B1(rn)=

D B1(rn+1−rn)
=D `r−1 rn/2tn, where tn are independent standard Gaussian random
variables. The same relation holds for B2. Hence, this particular approxi-
mation is equidistributed with 2−1/2`r−1 Gr(t). Of course, we rely here on
the convergence of the structure functions Dr(u) and Ir(u, v).

We state the main result (see Corollary (4.5) for a strengthened for-
mulation).

Theorem 2.2. Let 0 < H < 1. The MBL-process W(t) (2.13) is the
limit of the normalized WM-processWr(t)=`ln r Mr(t), as rQ 1.

3. CONVERGENCE OF THE WM-STRUCTURE FUNCTIONS

The WM-process Wr(t)=`ln r Mr(t) and the MBL-process W(t)
satisfy (2.8). The functions D(t) and I(s, t) that fully determine the co-
variance structure of the MBL-process have been discussed in Subsection 2.11:

Dr(t)=2 ln r C
.

n=−.
(1− cos(rnt)) r−2Hn,

Ir(s, t)=
1
2 ln r C

n
(sin(rn(s− t))− sin(rns)+sin(rnt)) r−2Hn.

(3.1)

When H ] 1/2, stronger conditions (2.11) admit the simpler univariate
function I(s). We will use the first integral (or sum) in (2.11) for H< 1/2,
and the second integral (or sum) for H> 1/2. We will show that, for
H ] 1/2, the structure functions Dr(t) and Ir(s) converge. The case of
H=1/2 will follow by continuity in view of uniform estimate (2.18).
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In the first line of (3.1) we put p=ln r, a=ln t, and f(x)=
(1− cos ex) e−2Hx. Then

Dr(t)
t2H
=2p C

n ¥ Z

f(np+a),

and the other structure functions follow the same pattern. Extracting the
key properties, we observe that the functions

Fp(a)=
df p C

.

n=−.
f(np+a) (3.2)

where a ¥ R and p > 0, and f: RQ R, are well defined, when, e.g.,

|f(x)| [ g(x), where g is Lebesgue integrable

and monotonic outside an interval.
(3.3)

In particular, g(x) and g(−x) decrease to 0, eventually for large x. We will
write OgP=>.−. g(u) du. A well defined Fp(a) is periodic with the period p,
which can be seen by applying the translation nW n+1 to the series.

Theorem 3.1. For a continuous function f satisfying (3.3),

lim
qQ 0
Fq(a)=OfP=F

.

−.
f(u) du, uniform in a ¥ R. (3.4)

Proof. Since f is Riemann integrable, so is Fp, since

F
1

0
Fp(a+xp) dx=C

n
p F

1

0
f(np+(a+xp)) dx=C

n
F
(n+1)p

np
f(u+a) du

=F
.

−.
f(u+a) du=F

.

−.
f(u) du, (3.5)

Observe that the monotonicity and integrability of a dominant g justifies
the interchange between the summation and integration in the first
equality.

The family {Fp : 1 [ p [ 2} is uniformly equi-continuous if

|DFp(a)|=|Fp(a+d)−Fp(a)| [ j(d), 1 [ p [ 2,−p [ a, a+d < 0,
(3.6)
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where j=j(d) is a continuous non-decreasing function on, say, [0, 1],
with j(0)=0 and no dependence on p. Indeed, each member of that family
can be written as

Fp(a)=p C
|n| [N

f(np+a)+RN(p, a), (3.7)

where the remainder satisfies the inequality |RN(p, a)| [ 2 >|n| > N−1 g(x) dx.
Hence, the property is fulfilled, because the collection of finite sums is uni-
formly equi-continuous and the remainder converges to 0, for NQ.,
uniform in p ¥ [1, 2] and a ¥ (−p, 0].

Further, for every positive integer k,

Fp/k(a)=
1
k
C
k−1

j=0
Fp(a+jp/k). (3.8)

Indeed, it suffices to break the series into k sums, each taken over integers
m such that n=mk+j, where j=0, ..., k−1 is the remainder of division of
n by k.

Let q > 0. Put k=[1/q]+1 and p=pq=q([1/q]+1), where [x]
denotes the integer part of x. Then 1 [ p [ 2 and q=p/k. Hence, using
(3.5) and (3.6),

|D|=df |OfP−Fq(a)|=:F
1

0
Fp(a+xp) dx−Fp/k(a):

=:F 1
0
Fp(a+xp) dx−

1
k
C
k−1

j=0
Fp(a+jp/k):

[ C
k−1

j=0
F
(j+1)/k

j/k
|Fp(a+xp)−Fp(a+pj/k)| dx

[ j(p/k)=j(q).

This concludes the proof. L

The more we know about f, the quicker and easier the estimate
becomes. For example, if f is differentiable and its derivative decreases
rapidly, |fŒ| [Ke−cx, then the use of (3.8) is unnecessary. For example, this
occurs when H> 1/2, and f(x)=(1− cos ex) exp {−2Hx} or f(x)=
(sin ex−ex) exp{−2Hx}. One can proceed directly from (3.5). Indeed,
using the fundamental theorem of calculus,

|OfP−Fq(a)| [C
n
F
q

0
|f(nq+a+x)−f(nq+a)| dx [ CHqQ 0.
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In the remaining cases of interest (i.e., H< 1/2, and f(x)=(1−
cos ex) e−2Hx or f(x)=sin exe−2Hx) the exponential bound increases, for
x > 0. However, the above argument still applies for the ‘negative’ part of
the defining series, |D−| [ C−q. The remainder of the argument follows by
an optimization procedure, based on decomposition (3.7). It follows (cf.
[SM00]), that

|D| [ CHq2H, for H< 1/2, and

|D| [ C1/2q ln
c
q
, for H=1/2,

for suitable constants CH. For further comments, see Section 5.2.

Theorem 3.2. Let 0 < H < 1 and r s 1. Then, the covariances
CRr (s, t), C

I
r(s, t), and CMr (s, t) of the normalized Weierstrass–Mandelbrot

process Wr(t)=`ln r Mr(t) converge uniformly on intervals to the corre-
sponding covariances CR(s, t), CI(s, t) and CM(s, t) of the MBL-process.

Proof. It suffices to see that the structure functions Dr(t), for
H ¥ (0, 1), and Ir(t), for H ] 1/2, converge. By Theorem 3.1, for every
H ¥ (0, 1),

lim
rQ 1

Dr(t)
t2H
=2cf,

uniform in t > 0. Therefore limrQ 1 Dr(t)=2t2H >.−. f, uniform on every
interval. Then,

cf=cf(H)=F
.

−.
(1− cos ex) e−2Hxdx=rH

In particular, the covariances of the real and imaginary parts of Wr(t) con-
verge to covariances of the real and imaginary parts of a complex fBm(H).
That is (2cf/2=rH, cf. (2.10)),

CRr (s, t)=C
I
r(s, t)Q rH(|s|

2H+|t|2H−|s−t|2H).

If H ] 1/2, then the simplified structure function I(s) exists, cf. (2.11).
Then, we apply Theorem 3.1, with f(x)=sin exe−2Hx, when H< 1/2 and
f(x)=(sin ex−ex) e−2Hx, when H \ 1/2. First, let H ] 1/2. Then, (cf.
(2.15))

lim
rQ 1
Ir(s, t)=

a(H)
2
(sign(t−s) |t−s|2H− sign(t) |t|2H+sign(s) |s|2H),
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where

a(H)=˛F
.

−.
sin exe−2Hxdx

F
.

−.
(sin ex−ex) e−2Hxdx

=iH.

For H=1/2,

lim
rQ 1
Ir(s, t)=F

.

0
(sin(t−s) w− sin tw+sin sw)

dw
w2
=I(s, t),

which is the imaginary part of the covariance of the complex fractional
Brownian motion (2.13). This completes the proof of Theorem 3.2. L

Remark 3.3. 1. If lim infxQ −. f(x)=c > 0, then limp Fp(a)=..
Hence, for H=1, Dr(t)Q.. Since D(t)=ct2 for fBM(1), no convergence
takes place.

2. If H> 1/2, the structure functions converge in a stronger sense.
The derivatives of Dr(t) and Ir(s) converge uniformly to the derivatives of
the corresponding structure functions. The functions are differentiable
nowhere when H [ 1/2.

4. CONVERGENCE OF DISTRIBUTIONS

We introduce a category of stochastic processes whose distribution is
determined by the covariance structure, to some extent. These processes do
not have to be Gaussian yet the aforementioned property is an important
feature of a Gaussian process.

Consider a sequence z=(zn) of random planar vectors zn=(tn, gn),
n ¥ Z, such that

zn are independent and symmetric;

Et2n=Eg2n;

for every n, tn and gn are uncorrelated.

ˇ (4.1)

Without loss of generality we may and do assume that Et2n=Eg2n=1. For a
sequence z=(zn) of vectors zn=(xn, yn) such that

||z||22=
df C

n
|zn|2=C

n
(x2n+y

2
n) <.,

The Weierstrass–Mandelbrot Process Revisited 1333

File: KAPP/822-joss/104_5-6 342352 - Page : 17/32 - Op: DS - Time: 13:54 - Date: 13:08:2001



the random function

Oz, zP=df C
n ¥ Z

(xntn+yngn) (4.2)

is well defined under (4.1). A complex random variable W=X+iXŒ is
called quasi-Gaussian, if X=Oz, zP and XŒ=OzŒ, zP, for some z, zŒ,
sequences of pairs of real numbers. We dub a complex stochastic process
W(a) quasi-Gaussian, if each W(a) is quasi-Gaussian, and only coeffcients
(zn) depend on the parameter a while the random sequence z is parameter-
free.

The non-Gaussian WM-process is quasi-Gaussian. More examples can
be constructed easily by replacing the random variables e i2fn in (1.1) by
random variables zn, satisfying (4.1).

A quasi-Gaussian process (or variable) can be immediately turned into
a Gaussian process by replacing the vector (tn, gn) by a pair of independent
standard Gaussian random variables, for every n. For example, process
(1.5) is a Gaussian counterpart of the WM-process.

A process with spectral representation (2.4) with a Gaussian spectral
random measure Z is quasi-Gaussian. We normalize terms in (2.6). First,
we partition the real line into intervals [n, n+1). Then we can use inde-
pendent pairs of independent standard Gaussian random variables. Also,
e.g.,

x2n=F
n+1

n
(1− cos tw)2 EZ21(dw)+F

n+1

n
sin2 twEZ22(dw),

and yn follows the similar pattern corresponding to the second line in (2.6).
We will estimate the Fourier transform of a quasi-Gaussian process.

Since Oz, zP is a linear stochastic process in the parameter z=(zn), hence
E exp {iOz, zP} is general enough. Below and elsewhere, ||z||.=

df supn |zn|.

Proposition 4.1. Assume (4.1). Then, for k \ 2 and ||z||. [ 1,

:E exp {iOz, zP}− exp 3 −||z||
2
2

2
4: [ k

4

24
||z||2. ||z||

2
2+
Ek(z)
2
||z||22, (4.3)

where

Ek(z)=
df sup

n
E[|zn|2; |zn| > k].
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Proof. The following inequality follows by a routine calculus

−v2 [ ln(1−v+u)+v [ u, whenever 0 [ u [ v < 12 . (4.4)

Let X be a random variable such that E |X|2 [ 1. Put

u=E 1cos X−1+
X2

2
2 > 0 (4.5)

(as cos x−1+x2/2 > 0), and v=EX2/2. Then, inequality (4.4) implies that

−
(E |X|2)2

4
[ ln E cos X+

EX2

2
[ E 1cos X−1+

X2

2
2 (4.6)

When X is symmetric, then Ee iX=E cos(X). Let ||zn||
2
2=EOzn, znP2 [ 1.

Then

:E exp 3 i C
n
Ozn, znP4− exp {− ||z||2/2}:

=:exp 3C
n

ln E cosOzn, znP4− exp 3 −C
n
(x2n+y

2
n)/24:

[C
n

:ln E cos Ozn, znP+C
n
(x2n+y

2
n)/2: .

We will find an upper bound of the term under the absolute value. By (4.6),

ln E cosOzn, znP+
EOzn, znP2

2
[ E(cos Ozn, znP−1+Ozn, znP2/2). (4.7)

Now, consider two inequalities

0 [ cos x−1+
x2

2
[
x4

24
. and cos x−1+

x2

2
[
x2

2
. (4.8)

Then, we split the expectation in the right hand side of (4.7) into the sum of
two terms, one being the expectation, restricted to the event {|zn| [ k}, and
the other, restricted to its complement, {|zn| > k}. For the first term, we
apply the first inequality of (4.8):

E[cosOzn, znP−1+Ozn, znP2/2; |zn| [ k] [
1
24

E[(xntn+yngn)4; |zn| [ k]

[
k4

24
(x2n+y

2
n)
2 (4.9)
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When k \ 2, then k4/24 > 1/4 (1/4 is the constant in the lower bound in
formula (4.6)). This leads to the first term on the right hand side of (4.3).
Now, let us apply the second inequality (4.8) to the expectation, restricted
to {|zn| > k}:

E[cosOzn, znP)−1+Ozn, znP2/2; |zn| > k] [
1
2 |zn|

2 E[|zn|2; |zn| > k].

The summation over n yields the second term on the right hand side of
(4.3). L

The assumption of identical distribution below may be weakened by
the requirement of the uniform integrability of variables |zn|2, i.e., by the
condition limkQ. Ek(z)=0.

Corollary 4.2. Let the assumptions of Proposition 4.1 be satisfied.
Let zn=zn(p) depend on the variable p ¥ (0, 1] such that ||z(p)||.Q 0, and
a=limpQ 0 ||z(p)||2 exists. If zn are equidistributed, then

lim
p

E exp{iOz(p), zP}=exp {−a2/2} (4.10)

Proof. For z=z(p), assume that ||z||. [ 1, without loss of generality.
In addition to the triangle inequality, we use below the inequality from
Proposition 4.1, and the estimate |e−x−e−y| [ |x−y|, x, y \ 0. Thus,

|E exp{iOz, zP}− exp{−a2/2}|

[ |E exp{iOz, zP}− exp{− ||z||22/2}|+|exp{− ||z||22/2}− exp{−a2/2}|

[
k4

24
||z||2. ||z||

2
2+Ek ||z||

2
2+(||z||

2
2−a

2)/2.

Since zn have the same distribution, then EkQ 0. Thus, we can choose k
large enough to make the second term on the right hand side of the latter
inequality arbitrarily small. Then, we let p converge, leading to null limits
of the first and third terms. Therefore, the difference on the left hand side
becomes as small as desired. L

Roughly speaking, the convergence of variances will imply the con-
vergence of distributions, which extends the important feature of Gaussian
processes. By rewriting the inequality in Corollary 4.2, we arrive at the
following estimate of the rate of convergence.
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Corollary 4.3. Let the assumptions of Proposition 4.2 be satisfied.
Assume additionally that ||z||. [ 1. Then

|E exp{iOz, zP}− exp{−a2/2}| [ ||z||2. ||z||
2
2/4+(||z||

2
2−a

2)/2.

In particular, the estimate holds for the WM-process.

Proof. If zn are bounded random variables, |zn| [K, then we can
simplify the right hand side of (4.3), since Ek=0 for sufficiently large k.
In Proposition 4.1 we required k \ 2 for merely aesthetic reasons. As
explained in the last paragraph of the proof of that proposition, if |zn| [ 1
(e.g, for the Weierstrass–Mandelbrot process), then max(k4/24, 1/4) is a
smaller constant. Since Ek=0, we may and do improve the constant by
choosing k=1. L

The limits of covariance functions are covariance functions again. In
particular, there is a complex Gaussian process G(t)=X(t)+iXŒ(t) with
these covariances.

Theorem 4.4. Let {Wp(t)=Xp(t)+iX
−

p(t), p > 0} be a family of
quasi-Gaussian stochastic processes. Suppose that the covariance functions
converge pointwise, for pQ 0, and choose a complex Gaussian process
G(t)=X(t)+iXŒ(t) with the limit covariance functions. That is, suppose
that for every s, t, as pQ 0,

CRp(s, t)=EXp(s) Xp(t)Q CR(s, t)=EX(s) X(t)

CIp(s, t)=EX −p(s) X
−

p(t)Q C
I(s, t)=EXŒ(s) XŒ(t)

CMp (s, t)=EXp(s) X
−

p(t)Q C
M(s, t)=EX(s) XŒ(t).

(4.11)

If, for every t,

||zp(t)||
2
.=sup

n
|zp, n(t)|2=sup

n
(|xp, n(t)|2+|yp, n(t)|2)Q 0,

||z −p(t)||
2
.=sup

n
(|x −p, n(t)|

2+|y −p, n(t)|
2)Q 0,

(4.12)

then the finite dimensional distributions of the process Wp(t) converge
weakly to the corresponding finite dimensional distributions of G(t).

Proof. Let t1, ..., td be any sequence of times. Denote Wp, k=Wp(tk),
Xp, k=Xp(tk), X

−

p, k=X
−

p(tk). Then,

Wp, k=Xp, k+iX
−

p, k, Xp, k=C
n
Ozp, kn, znP,

X −p, k=C
n
Oz −p, kn, znP, k=1, ..., d,
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where zp, kn=(xp, kn, yp, kn), z
−

p, kn=(x
−

p, kn, y
−

p, kn) are pairs of real numbers.
The distribution of the (2d)-dimensional vector (Wp, 1, ..., Wp, d) is
determined by the distributions of all real linear forms

C
d

k=1
(akXp, k+a

−

kX
−

p, k)=C
n
(xp, ntn+yp, ngn), (4.13)

with

xp, n=C
k
(akxp, kn+a

−

kx
−

p, kn), yp, n=C
k
(akyp, kn+a

−

ky
−

p, kn). (4.14)

If we denote covariances of the vector (Xp, 1, ..., Xp, d, X
−

p, 1, ..., X
−

p, d) by

CRp(j, k)=C
n
(xp, jnxp, kn+yp, jnyp, kn)

CIp(j, k)=C
n
(x −p, jnx

−

p, kn+y
−

p, jny
−

p, kn)

CMp (j, k)=C
n
(xp, jnx

−

p, kn+yp, jny
−

p, kn),

then

C
n
(x2p, n+y

2
p, n)=C

j, k
ajakC

R
p(j, k)+C

j, k
a −ja

−

kC
I
p(j, k)+2C

j, k
aja

−

kC
M
p (j, k).

(4.15)

Like in Proposition 4.1, the characteristic function of linear form (4.13)
depends on the quantity on the left hand side, and by assumption it con-
verges to the characteristic function of ;d

k=1 (akX(tk)+a
−

kXŒ(tk)). There-
fore, the convergence of covariances implies the convergence of finite
dimensional distributions. L

Theorem 4.4 and Theorem 3.2 lead to a quantitative version of
Theorem 2.2 that provides an estimate of the approximation error. Let us
denote the supremum norms by ||D||T,.=sup0 [ t [ T |D(t)| and ||I||T,.=
sup0 [ s, t [ T |I(s, t)|, with or without subscript ‘‘r’’. For H< 1/2 or H> 1/2
one could employ the univariate functions I(t) and Ir(t) (cf. comments
following (2.11)). More intricate estimates are given in [SM00, Section 2].
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Corollary 4.5. The limit relation Theorem 2.2 is valid in the sense of
the convergence of finite dimensional distributions, uniform in every inter-
val [0, T].

:E exp 3 i C
k
(akXr(tk)+a

−

kYr(tk)4−E exp 3 i C
k
(akX(tk)+a

−

kY(tk)4:

[ CT, A(ln r+||Dr−D||T,.+||Ir−I||T,.), (4.16)

where ||a||1 [ A, ||aŒ||1 [ A (||a||1=;k |ak|), and a constant CT, A depends only
on (T, A).

Proof. It suffices to recognize the suitable quantities that appear in
Theorem 4.4. First, we return to denoting the imaginary parts of the pro-
cesses by the capital letter Y instead of XŒ. Next, we have p=ln rQ 0.
Then, zn=(tn, gn), where tn=cos fn and gn=sin fn. Further,

xp, kn=`p (1− cos (epntk)) e−Hpn=y
−

p, kn ,

yp, kn=`p sin (epntk) e−Hpn=−x
−

p, kn .

Given coefficients (ak), (a
−

k), we now obtain xp, n and yp, n as in (4.14), and,
consequently, vectors zp, n=(xp, n, yp, n).

Let us turn to the inequality from Corollary 4.3 that involves ||zp||.,
||zp||

2
2, with zp replacing z, and

a2=E :C
k
(akX(tk)+a

−

kY(tk)):
2

.

Assume that tk [ T and recall (2.10). Then, (4.15) implies

||zp||
2
2−a

2 [ 3A2 ||Dr−D||T,.+2A2 ||Ir−I||T,..

An upper bound of ||zp||
2
2 is obtained similarly. To control the supremum

norm ||zp||
2
. we may use the inequality

|zp, n|2 [ 2 1C
k
(a2k+a

−

k
2)1/22

2

(2KT2) p [ 8A2(2KT2) pQ 0.

Finally, we merge all obtained constants into a vague but lucid constant
CT, A. L
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5. APPENDIX

5.1. Stochastic Integral

Let Z(t) be a complex valued stochastic process. For an interval
A=(a, b], we define the random measure Z(A)=df Z(b)−Z(a). Let f be a
piecewise constant function, i.e., f=;n

k=1 zk1Ak, where zk are complex
numbers, Ak are disjoint intervals, and 1A denotes the indicator 0-1 func-
tion. The rudimentary stochastic integral follows the usual definition,
> f dZ=;k zkZ(Ak). Of course, one wants to extend the integral beyond
the class of simple functions. In general, a calculus-style extension fails
because typical trajectories of processes are highly irregular. For example,
trajectories of a Brownian motion have unbounded variation which makes
the Riemannian approach useless. While the use of generalized functions
(i.e., of distributions) is a promising choice, the processes in our purview
allow a direct and simple probabilistic treatment.

Let a second order process Z(t) be orthogonally scattered, i.e., for
disjoint intervals A and B, the random variables Z(A) and Z(B), defined
above, are orthogonal (i.e., uncorrelated). Without loss of generality we
may assume that its mean is zero, EZ(t)=0. For an interval A,
F(A)=df E |Z(A)|2 defines a deterministic control measure of the random
measure Z and leads to the isometry

E :F fdZ:
2

=F |f|2 dF, where f is piecewise constant. (5.1)

Piecewise-constant functions with bounded support form a dense set in the
Hilbert space

L2(F)=3f : F |f|2 dF <.4 .

Hence, the stochastic integral > f dZ can be extended to all integrands from
L2(F). That is, for every square integrable function f, the random variable

F f dZ=F
.

−.
f(w) Z(dw)

with finite variance is well defined. In particular, the random measure
Z(J), defined originally for intervals J only, now makes sense for a greater
variety of sets from the real line through the formula Z(A)=> 1AdZ, if
only F(A) exists and is finite. Also, by considering an increasing sequence
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rn, n ¥ Z, and a function f that is equal to a constant zn on the interval
(rn, rn+1], n ¥N, we obtain the formula

F
.

−.
f(w) Z(dw)=C

n
zn(Z(rn+1)−Z(rn)), if C

n
|zn|2 F([rn+1, rn)) <..

(5.2)

Increments of a complex process and of its real and imaginary parts are not
necessary orthogonal at the same time.

5.2. Theorem 3.1

5.2.1. Strength of Assumptions

Some properties of functions Fp are purely algebraic, and they hold
once these functions are well defined (for example, the periodicity and
(3.8)). In contrast, components of the proof of Theorem 3.1 rely on the
assumed properties of f, the continuity and condition (3.3). For example,
both properties are used to justify the interchange between the series and
the integral at the first equality in (3.5), and, a fortiori, make F integrable
(in the same sense f was, Riemann’s or Lebesgue’s). Even if we knew that
Fp was Riemann integrable, then formula (3.8) would merely suggest that,
for every a,

Fp(a) ’ OfP, when pQ 0. (5.3)

However, without the aforementioned assumptions, the only legitimate and
rigorous approach to the limit relation ‘‘ ’ ’’ would be to understand it as a
rather crude type of convergence along a subsequence, and even this sub-
sequence may depend on a.

Is a monotonic dominant necessary? All the arguments above are
rigorous and obvious, if, for example, a Riemann integrable function f has
a bounded support, that is, when f vanishes outside an interval. Indeed,
the series (3.2) and the subsequent series become then just finite sums. Yet,
even then (5.3) will bear the impaired meaning. For functions of true
interest, with unbounded support, not even their integrability and conti-
nuity together will make the argument viable. First of all, series (3.2) may
diverge, rescinding any farther discussion. We leave the design of examples
to the reader.

Assumptions of Theorem 3.1 embark a compromise between the dis-
tinctive form of our functions and a desire to find the weakest condition
leading to (3.4).
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5.2.2. Poisson Summation Formula

The formula is one of the celebrated tools used in Fourier analysis and
related areas (which includes the subject of this paper, too). Berry and
Lewis [BL80] mentioned it as a way of showing that the normalized WM-
structure function becomes the structure function of fBm in the limit. In
the introduction we mentioned a shortcoming of this approach. Because of
its popularity and extensive references (e.g., see [AB85]) to that paper, we
feel that we owe an explanation. However, complete computations are
rather cumbersome. Therefore, we will display only the key steps with suf-
ficient references to sources.

Let F be a continuous function on the real line. The Poisson summa-
tion formula states that

C
m
F(m)=C

m
F̂(m),

where F̂(m) is the Fourier coefficient F̂(m)=>.−. F(x) e−2pixm dx. The idea
of the argument lies in showing that

lim
pQ 0

C
m ] 0
F̂p(m)=0. (5.4)

This would imply that

lim
pQ 0

C
m
Fp(m)=lim

pQ 0
F̂p(0)=F

.

−.
(1− cos(ex)) e−2Hx dx

=F
.

0
(1− cos(u)) u−2H−1 du,

which agrees with the contents of (3.4), for f(x)=(1− cos ex) e−2Hx. Here,
a=ln t and p=ln r. The treatment of Fourier coefficients

F̂p(m)=p F
.

−.
(1− cos(epx+a)) e−2H(px+a)e−2pixm dx (5.5)

can be divided into three steps. First, F̂p(m) can be expressed in terms of
Gamma and trigonometric functions of complex variable (using standard
integration techniques),

F̂p(m)=
C(zm) sin pzm/2
2H+2pim/p

e2pmia/p, (5.6)
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where zm=−2H+1−2pim/p. Three cases, H< 1/2, H=1/2, and
H> 1/2, are slightly different. For example, for H> 1/2, the function C
must be extended to the part of the complex plain {Rz < 0}. For details we
refer to textbooks or guides on complex calculus. The tables of series and
integrals with theoretical briefs [GR80] (formula 8.312.8, p. 934) may also
serve the present purpose.

The next step deals with the asymptotic behavior of the obtained
expression. What for real Gamma function is known as Stirling’s formula,
now takes the form (e.g., referring again to [GR80], p. 937, 8.327 or
8.328.1, when H ] 1/2, and 8.332.1 when H=1/2 i.e., Rzm=0),

|C(z) sin pz/2| %`p/2 |Iz|Rz−1/2, as |Iz|Q.. (5.7)

Therefore, for pQ 0,

|F̂p(m)| ’
|2pm/p|−2H+1/2

|2H+2pim/p|
=

p2H+1/2

|2Hp+m|m2H−1/2
’
p2H+1/2

m2H+1/2
. (5.8)

The argument is finished if H> 1/4. That is, (5.4) holds, because the series
;m ] 0 F̂p(m) converges absolutely and uniformly.

The third step is needed to handle the case H [ 1/4, because the
domination (Weierstrass’) criterion is now useless. In order to continue,
F̂p(m) would have to be exposed to a more subtle procedure. One could
replace terms by new simpler terms, as long as the differences form uni-
formly and absolutely convergent series. Details are quite onerous, but one
can show that (5.4) holds, if and only if, the following series is convergent
(conditionally), and its limit is 0, as x=1/pQ..

C
m ¥ Z, m ] 0

e imx ln(cmx)

|mx|2H+1/2
Q 0, xQ.,

for a suitable constant c. It is quite challenging to prove the convergence
directly.

Of course, we do know that the rest of the argument can be completed
somehow, for Theorem 3.1 has been proved. However, we feel reluctant to
accept that (5.4) follows from the Poisson summation formula entirely.
Nonetheless, the very method induces a special phase transition while the
parameter H passes through the point H=1/4 on the parameter scale
[0, 1]. We do not know whether the special point is tangible or it is only
superficial.
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5.2.3. Pointwise Convergence

The referee pointed that our argument did not reveal immediately the
very integral nature of structure functions. For example, Dr(t) (3.1) can be
rewritten, replacing ln r % (r−1)/r, as follows

Dr(t) %
r−1
r

C
.

n=−.
(1− cos(rnt)) r−2Hn

= C
.

n=−.
(1− cos(rnt)) r−2Hn(rn−rn−1) r−n

= C
.

n=−.
F
rn

rn−1
(1− cos[rn] t))[rn]−2H−1 dx,

which is an approximation of the integral

F
.

0
(1− cos(xt)) x−2H−1 dx.

We recognize the Lebesgue integral of a step function, constant on intervals
(rn−1, rn], which converges pointwise to the integrand, as rQ 1. The
dominant, equal to x−2H+1t2/2, for x ¥ (0, 1), and equal to x−2H−1, for
x ¥ [1,.), is integrable on (0,.). Hence, by the dominated convergence
theorem

lim
rQ 1
Dr(t)=F

.

0
(1− cos(xt)) x−2H−1 dx,

for every t [ T. One can treat the other structure function Ir(t) similarly
(when H ] 1/2, for the case H=1/2 requires a special approach since the
variables in Ir(s, t) cannot be separated).

This immediate conclusion of the convergence for each separate t
provides no clue regarding the uniform convergence with respect to t or the
rate of convergence. In the absence of these factors, the quality of potential
simulation of trajectories would suffer. To achieve the uniform convergence
and to control the rate of convergence, one needs an estimate of the varia-
bility of Dr(t), subordinate to the same property of f. In other words,
either the proof of Theorem 3.1 would have to be emulated or an additio-
nal argument provided.

5.3. Probability Metrics and Uniform Convergence

Consider first the ensemble of probability laws of real random
variables. There are many ways of giving a quantitative meaning to vague
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statements like ‘the probability laws of X and Y are close’. Such ways
originated in works of Lévy and Kolmogorov. An explicit theory of the so-
called metrics in probability spaces has been developed by Zolotarev, and
extended further by many authors. The monograph [Rac91] may serve as
an exhaustive guide to this vast subject. A classical quantity measuring the
distance between two probability laws, say, in terms of cumulative distri-
bution functions, is the Gnedenko–Kolmogorov metric

abs(X, Y)=sup
c
|P(X [ c)−P(Y [ c)|.

For graphical reasons, the abbreviation abs(X, Y) is often used in place of
the proper symbol abs(L(X),L(Y)). Clearly, abs(X, Y)=0 implies the
equality of probability laws, not of random variables.

This metric is factually too strong in areas where the convergence of
distributions (like in the central limit theorem) is of interest. Among a
plethora of metrics, quantifying the convergence of probability of laws
(again, cf. [Rac91]), the difference of characteristic functions (i.e., of
Fourier transforms)

|Ee iaX−Ee iaY|

is often useful. Of course, the quantity, depending on a solitary a, is not a
metric itself, for a must run through all real multipliers. One needs to con-
sider a family of semi-metrics which may be turned to a metric. Lévy’s
topology of uniform convergence of characteristic functions on compact
intervals (cf. also [Lu70]) is equivalent to the convergence of probability
laws. A typical procedure, beginning with

dk(X, Y)=sup
|a| [ k
|Ee iaX−Ee iaY|, leads to a true metric

d(X, Y)=C
k

dk(X, Y)
2k

. (5.9)

The extension of this quantitative approach to random vectors in a
n-dimensional space is straightforward. It suffices to interpret a and X
above as vectors, aX as the scalar product, and |a| as the Euclidean dis-
tance from the origin.

In the ensemble of probability laws L(W) of complex or even real
random processes W=W(t) on the interval [0, T] the situation is more
complicated. First, the term ‘convergence’ refers to a much greater number
of non-equivalent definitions. For example, a process with continuous
trajectories may be seen as a random variable taking values in the metric
(Banach, in fact) space C[0, T]. As such, its distribution generates a prob-
ability measure in this space. Alternatively, sequences of times t1, t2, ..., tn
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of various length plunge the selection (X(t1), ..., X(tn)) into Euclidean
spaces. In particular, ‘the convergence of finite dimensional distributions’ is
essentially weaker then ‘the convergence of distributions’. The latter usually
requires a tremendous machinery of the general theory of stochastic pro-
cesses and induces a great deal of measure-theoretic problems (cf., e.g.,
[JS87]).

Even the convergence of finite dimensional distributions may show
varying degrees of strength. The quoted qualitative definition, as in the
vicinity of (1.4), refers to various choices of moments t1, ..., tn. We may
expect a priori a weakening of convergence as time elapses. Even the con-
trolled growth of the variance (exactly of order t2H for the limit MBL-
process, and approximately of order t2H for the WM-process) does not
govern the deviation between distributions, in general, yet it may suggest a
scaling factor (wishfully, of the given order). We factually prove that the
obtained properties hold uniformly with respect to time.

To measure the distance between the finite dimensional distributions
of processes W(t)=X(t)+iY(t) and WŒ(t)=XŒ(t)+iYŒ(t), we can design
a uniform analog of (5.9), dA(W, WŒ)=

df

sup :E exp 3 i C
k
(akX(tk)+bkY(tk)4−E exp 3 i C

k
(akXŒ(tk)+bkYŒ(tk)4:,

(5.10)

where the supremum is taken over n, k=1, ..., n, n are arbitrary integers,
zk=ak+ibk, with ;k |ak| [ A,;k |bk| [ A, and |t|.=|(t1, ..., tn)|.=
maxk tk [ T. Of course, (5.10) may be inconvenient, when used directly.
Therefore, we take advantage of an efficient estimate (see Proposition 4.1
and its corollaries).

This brings us to the class of quasi-Gaussian processes. Recall that the
possibility of a direct transformation into a Gaussian process was one of
reasons behind this name. For the sake of clarity, let us confine to the pro-
cesses with bounded summands (with the unit bound, like in the WM-
process), and turn our attention to the upper bound in Corollary 4.3, and
its rephrase, (4.16). The upper bound contains two terms. We notice that
the first term controls the formal switch to a Gaussian process, while the
second term measures the deviation of variances. The first term results
from an upper bound of the distance, by means of metric dA (5.10),
between the original process and its formal Gaussian counterpart. The
quantity

er=sup
t [ T
|Dr(t)−D(t)|+ sup

s, t [ T
|Ir(s, t)−I(s, t)|
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controls the convergence, for (4.3) or (4.16) reads

dA(Wr, W) [ C(r−1+er),

with a constant C depending only on T and, possibly, on H, worsening
with H approaching 0 or 1. In vague terms, it means that, for rQ 1,
uniform in t ¥ [0, T]:

1. a WM-process is almost Gaussian;

2. its covariance is almost equal to the covariance of the MBL-
process;

and, thus, the entire process is almost a fBm. This is the factual meaning of
the statement of [BL80].
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